Fandom

Math

Teorema de Rolle

168páginas en
el wiki
Crear una página
Discusión0 Compartir

El Teorema de Rolle dice que si f(x) es una función real de variable real, continua en el intervalo cerrado [a,b], derivable en el abierto (a,b) y f(a)=f(b) entonces existe al menos un punto c en el intervalo abierto (a,b) donde f'(c)=0.

Demostración Editar

Rolle.gif

Ejemplo del teorema de Rolle

  • Gracias a la continuidad de f, la imagen de [a, b], conjunto conexo es un conjunto conexo de R, y por lo tanto es un intervalo, el intervalo imagen.
  • La imagen por una función continua de un conjunto compacto es un conjunto compacto, y por lo tanto el intervalo imagen es cerrado y de longitud finita: es de la forma [m, M], con m el valor mínimo de f y M su valor máximo.
  • Si m = M , la función es constante, y cualquier punto c de (a, b) conviene. Descartado este caso, m ≠ M significa que uno de los dos no es igual a f(a) = f(b). Supongamos que sea M. Entonces M > f(a) = f(b), y por lo tanto el máximo M está alcanzado en el interior del intervalo (corresonde al primer ejemplo).
  • Sea c en (a, b) tal que f(c) = M. Por definición del máximo, M = f(c) ≥ f(x) para todo x de [a, b]. Entoces el cociente (f(c) - f(x)) / (c - x) es positivo cuando x < c (porque su numerador es siempre positivo y su denominador es positivo no nulo), y es negativo cuando x > c (el denominador se vuelve negativo no nulo). Pero f '(c) es por definición el límite de este cociente cuanfo x tiende hacia c. El límite por la izquierda, f '(c-)positivo, tiene que ser igual al límite por la derecha, f '(c+). Por lo tanto este límite común es nulo, o sea f '(c) = 0.

La prueba es muy parecida si es el mínimo que está alcanzado en (a, b).

¡Interferencia de bloqueo de anuncios detectada!


Wikia es un sitio libre de uso que hace dinero de la publicidad. Contamos con una experiencia modificada para los visitantes que utilizan el bloqueo de anuncios

Wikia no es accesible si se han hecho aún más modificaciones. Si se quita el bloqueador de anuncios personalizado, la página cargará como se esperaba.

También en Fandom

Wiki al azar